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LETTER TO THE EDITOR 

Numerical simulations of the random phase sine-Gordon 
model 

David J Lancastert and Juan J Ruiz-Lorenzoz 

Italy 
Dipanimento di Fisica and Infn, Univ&i&di Roma ‘La Sapienza.’. P A  Mom 2,00185 Rome, 

Received I August 1995~ 

Abstract We have performed comprehensive numerical simulations of the random phase sine- 
Gordon model, studying both statics and dynamics for various values of the coupling. The glass 
transition can be seen both in static and dynamic signals at a temperature that depends on the 
coupling. Our resulfs, for reduced temperature dependence, agree qualitatively (statics) and 
quantitatively (dynamics) with renodization-group predictions. 

1. Introduction 

The random phase sineGordon model has various physical interpretations of interest such 
as a crystalline surface with disordered substrate [l] and an may  of flux lines in a 
superconducting film subject to random pinning and a parallel magnetic field 121. The model 
has recently been the scene of  considerable activity, both theoretical and numerical (see for 
instance [3-9]), and in neither area is there agreement on the details of the low-temperature 
phase. In this letter we present a comprehensive numerical study of both dynamic and static 
aspects of the model for a range of values of the interaction parameter A. We also compare 
with the disordered discrete Gaussian model which was the subject o f  earlier work 181. This 
study reveals simultaneous movement of the static and dynamic critical temperatures as 1 
is varied, a phenomenon not previously visible in more restricted studies. 

The Hamiltonian of the random phase sine-Gordon model is 

where (ij) denotes nearest neighbours, I$; is a continuous variable and q; E 10, 1) is the 
quenched random disorder. 

The discrete Gaussian model with a disordered substrate is related to the A + 00 limit 
of this model. 

where the field is now integer valued, up to shifts by the disorder: @i 
We employ a Metropolis Monte Carlo algorithm, and for the discrete Gaussian model 

the proposed change in the field is naturally i l .  For the continuous model the move is 
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chosen from a distribution consisting of~three flat regions, each of width e and, respectively, 
centred about 0 and i l .  This form of move is far more efficient than one taken from a 
single flat distribution centred at zero, and makes the connection between the two models 
clearer. We have fixed the relative height of each region so that about half the moves are 
large. The widths e are adjusted at each temperature and value of A to give an acceptance 
rate of approximately 50%. 

We have used the computer APE [13], simulating in parallel 256 systems composed of 
128 pairs with distinct disorder (samples). Each pair of uncoupled replicas with the same 
disorder was subject to different thermal noise, and in the standard procedure for disordered 
systems the overlap between the copies was monitored. The disorder average was taken 
over all 256 systems. 

The size of the system is always H2, studies of the discrete Gaussian model for larger 
sizes were reported in 181. We fix K = 2 so the critical temperature according to theory 
valid for small A is Tc = 2 / n .  Various values of A have been considered up to A = 3.0, 
thermalization becoming increasingly difficult as A increases. Here we present results for 
A = 0.5,2.0. 

In all cases the energy relaxes almost immediately to its final value and we therefore 
conclude that local equilibrium is, achieved quickly, leaving the long-time dynamics to be 
that of domain readjustment. A direct visual inspection of the configurations confirms this 
but a detailed investigation of the process requires the correlation function defined by 

C(r) = Wr - $ 0 0 ) ~ )  (3) 
where ( . ) and 7 denote thermal and disorder averages, respectively. 

2. Dynamics 

It is convenient to plot the correlator against logr as in figure 1, the top curve represents 
the equilibrium form. This equilibrium w e  is fairly linear except for the finite-size effects 
and a small component of a different large-distance behaviour which will be the subject of 
the next section. The other curves in figure 1 illustrate the approach to this final equilibrium 
form, the shoa-distance part of the correlators follows the equilibrium curve but a plateau 
is reached beyond a distance that can intuitively be identified as the correlation length t ( t )  
at that time. 

This intuitive definition of the time-dependent correlation length is numerically robust 
since the plateaux are very well defined. Knowing the asymptotic form of the correlator 
(Cay(r)), it is simple to obtain the correlation length < ( t )  from Cay(<@)) = Plateau[C,(r)], 
where C,(r) is the correlation function at the time t .  Starting from a constant configuration 
(i.e. 6; = constan!), we measure how the correlation length grows with time. Provided t ( t )  
does not approach the system size, we find that dynamical scaling is obeyed well: 

t ( t )  t ' l 2 .  (4) 
We show this growth in figure 2 on a log-log scale. The errors on each point arise 
from variations between different samples. We emphasise that this scaling behaviour is 
independent of the detailed choice of local Monte Carlo dynamics. We have checked this 
explicitly by comparing with the slower dynamics based on a simple move taken from a 
single flat distribution cenfred around zero, and, in fact, have used this alternative move 
for our determinations of z. The dependence of z on temperature is shown in figure 3 for 
A = 0.5,2.0 and CO. At high temperatures the dynamic exponent takes its Gau.ssian value 
of 2, marked by a line in the figure. Below, but in the vicinity of the transition the deviation 
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Figure 1. Correlation functions. C, ( r ) ,  shown at equal time intervals (bottom to top: I = 2000, 
4000, 6000 and 8000 sweeps), and h e  equilibrium mrrelator, Csy(r), as the full cume 
(A = 2.0. r = 0.5). 
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Figure 2. Growth of correlation length wirh time (A = 2.0. T = 0.5) 

from the Gaussian value appears to be linear in the reduced temperature. This observation 
would be in accord with the RG prediction for T c TC [IO] ’ 

~~ 

z = 2 + 2 ey (1 - T j  Tc) (5 )  
whew the formula is valid for small A with Tc = 2/31 and y is Euler’s constant. If the 
linearity continues to hold for large values of h we can determine transition temperatures 
reasonably accurately and it is clear that these depend on A. In any event, the large-A data 
is certainly not compatible with Tc = 2/31. Equation (5) yields a A-independent slope with 
numerical value 3.56. We can try to extract the slope and critical temperature assuming a 
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Figure 3. The dynamical critical exponent. L. against temperature for A = 0.5.2.0 and m. The 
Gaussian value is marked with a horizontal line. We use squares and a dotted c w e  for A = 0.5, 
diamonds and a broken c w e  for A = 2.0 and cmsses and a fill curve for A = m. The curva 
are only to guide the eye. 

Table 1. ReEulu of linear fit io z (T)  (dynamics) and quadratic fit to k ( T )  (natics) for three 
values of A and for different sets of temperatures (intervals). See the text for notation. All the 
fits in this table have x2/d.o.f ~ 1 !  1. 

Dynamics Statics 

A Interval an TD IlltetVal 4s Ts 
0.5 [0.4.0.5] 2.W) 053(2) [0.4,0.5] 0.69(12) 0.58(2) 

[0.35.0.5] 3.1(3) 052(1) [0.35,0.5] 0.67(7) 0.58(1) 
2.0 [0.5.0.75] 3.8(2) 0.78(1) [05,0.75] 0.54(6) 0.77(2) 

[0.6. 0.71 4.3(6) 0.76(2) [055,0.75] 0.44(12) 0.18(4) 
m [0.55,0.8] 2.7(3) 0.850) [05,0.80] 0.440) 0.87(2) 

[0.6. 0.751 2.W) 0.83(4) [0.6,0.80] 0.35(5)' , 0.9OCZ) 

fit of the form 

Z = 2 + OD( 1 - T/TD). (6) 
The results for and TD are reported in table 1 (left). Different sets of points have been 
used to demonstrate that the fit is stable, but we always ignore points within twice their 
error of the Gaussian value ( z  = 2). 

An alternative type of comparison is available with results for the dynamical exponent 
based on the response to a small driving force F. In the low-temperature phase RG arguments 
give the relation between applied force and resulting velocity as [3]: (a,$) - rZrF'+*", 
where r is the reduced temperature. It is reassuring that our data are in good numerical 
agreement, both at small [5 ]  and large [9] A, with such a different approach basad on 
Langevin dynamics. 

In this section we have shown that in the vicinity of the critical temperature the z- 
exponent has a linear dependence on reduced temperature but that the critical temperature 
depends on A. The slope is in tolerable agreement with the prediction from RG. 

-~ 
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3. stalias 

In this section we discuss the equilibrium form of the correlation function along the lines of 
previous work on the discrete Gaussian model [8] and shall repeat some of the arguments 
used there. The main priority'is to ensure that thermal equilibrium is actually obtained. 
An annealing scheme is used and it is important to include the large Monte Carlo moves 
discussed above, even so, very long times are needed. Qpically for each temperature, 
we thermalize for 1 6  sweeps, measure over a period of 2 x 104 sweeps, and repeat this 
cycle several times. The system is taken to be thermalized when we reach a situation in 
which subsequent measuring cycles show no systematic drift and fluctuations within each 
measurement cycle are similar to those between cycles. 

At high temperatures the correlator is accurately fitted by a single log, or more precisely 
by the lattice version: 

where the symbol Y holds for L >> 1. The coefficient follows the temperature to within l%, 
in agreement with all theoretical predictions [4, 111. 

As the temperature is reduced below some value this fit becomes substantially worse. 
The degradation cannot be ascribed to short distance lattice effects since a similar worsening 
occurs for fits in which short distance points are omitted. We emphasise that the long 
distance finite-size effects are well under control in (7). Our results are not sensitive 
enough to determine the functional form of the correction necessary but theoretical prejudice 
suggests a fit of the form [I]: 

C ( r )  = b~P,(r)  + b z P ~ ( r ) ' .  _. ~. (8) 
This fit works very well for all A, improving as equilibrium is approached, and with a value 
of x 2  that is small and does not vary significantly throughout the temperature range. The 
fit is made by an exact minimization procedure and errors are determined by the jack-knife 
procedure. Figures 4 and 5 show the resulting values of the coefficients for A = 0.5 and 
2.0, and also the data for A = 00 from [8]. 

The first coefficient 61 continues to follow its high-temperature behaviour down to low 
temperatures showing only small deviations from linearity. The second coefficient & is 
sensitive to the~transition and grows at low temperature, it does not, however, display the 
same kind of linearity evident in the dynamic case. It is therefore slightly more difficult to 
determine the critical temperature though it is clear that this is A dependent. 

The form (8) is the result of RG calculations [l] which predict a universal behaviour 
for the second coefficient b2 = 8r2 + O(r3)  [2 ] .  This quadratic dependence on reduced 
temperature can be tested, and we show in table 1 (right) the results of a fit 

where we have only used points for which 62 is further than twice the error away from 
zero. The fit is~good, but in this case the value of the coefficient is not even close to the 
RG prediction. 

The transition identified in the dynamic and static measurements should occur at the 
same temperature. This follows from the RG analysis and also from a variational calculation 
of the entropy of metastable states [14, 151. We see from table 1 that both static and 
dynamic measurements give similar critical temperatures, and most importantly, that these 
shift simultaneously with different values of A. 
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Figure 4. Coefficient of the log (b l )  versus the temperature for different values of the A 
parameter from a two-panmeter fit. The symbols we the same as in figure 3. The error bars 
am smdler than the size of the points. 
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Figure 5. Coefficient of the 102 (td versus the temperature for different values of the A 
pamameter from P two parameter fit. The symbols are the same as in figure 3. 

4. Conclusions 

This comprehensive study reveals clear signals of a transition both in the static and dynamic 
properties of the system. The transition seems to occur at the same temperature whether 
determined by static or dynamic methods. The transition temperature does, however, depend 
on 1 being close to K / X  only at small A. We find the general behaviour predicted by RG 
arguments, that is linear behaviour of the dynamic exponent, z CY r,  and quadratic behaviour 
of the coefficient of lo?, CY 5'. Detailed numerical agreement of the coefficients, 

1 
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especially in the case of the quadratic behaviour, is lacking (by a factor of -14) while in 
the dynamic case the agreement is reasonable. Finally, an explanation of the h dependence 
of all the quantities measured is needed. 

The essential difference of opinion on the low-temperature phase is between analyses 
based on RG that predict a log’ form for the correlator, and analysis based on a variational 
approach that yield a log. The RG approach has been criticised because the solutions are 
unstable with respect to breaking of replica symmetry [12], however, the significance of this 
is not clear since the techniques for dealing with replicas are not sufficiently developed’to 
deal effectively with non-mean-field situations. On the other hand, the variational approach 
has only been calculated for a Gaussian ansatz which corresponds to leading order in some 
1/N expansion. Recent results [16] using RG arguments for an N-component version of 
the random phase sineGordon model are interesting in that they calculate the coefficient of 
the log’ term to be order l/N3. We hope that further analytic work in both approaches to 
understand the smallness of the log’ coefficient~seen in this and all other simulations, will 
lead to a resolution of the puzzle. 

Finally, we believe that we have shown that it is possible to obtain reliable and accurate 
numerical data for this rather contentious subject that can be extended and used to further 
test analytical predictions [17]. 

We acknowledge useful discussions with B Coluzzi, E Marinari, G Parisi, M Potters and 
R Monasson. JJRL is supported by an MEC grant (Spain), and DL by an EC HCM grant. 
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